An Inverse Finite Element Method for Application to Structural Health Monitoring

Alex Tessler
Analytical and Computational Methods Br.
NASA Langley Research Center, Hampton, VA

Jan Spangler
Lockheed Martin Aerospace Co.
NASA Langley Research Center, Hampton, VA

14th U.S. National Congress of Theoretical and Applied Mechanics
June 27, 2002

Langley Research Center
Motivation

- Next generation of aerospace/aircraft vehicles
 - Multifunctional structures
 - Fiber Optics (FO) sensor system
 - Structural health monitoring in real time

- Morphing wing technology
 - deformations by embedded actuators

- "Joined Wing" aircraft
 - Radar on wing surfaces
 - Wing deflections
 - Radar adjustment
Inverse Problem

- Strain sensors on surfaces of structural components
- Arbitrary location and orientation

Objective:
Determine deformed shape of structure in real time
Approach

Develop *Inverse FEM* for reconstruction of *deformation* using measured strain data, i.e., integrate $\varepsilon-u$ relations to obtain u.
Background

- Tikhonov-Arsenin (1977)
 - Ill-posed, inverse problems, regularization method
- Tessler-Dong (’81), Tessler-Hughes (’85)
 - Anisoparametric C^0 elements
- Tessler et al (’93)
 - Discrete least-squares finite elements for smoothing of data
Variational Formulation of Inverse FEM Element level

Find an extremum of the smoothing functional for a fixed value of the regularization parameter λ:

$$
\Phi^\lambda(\mathbf{u}^h) = \|\mathbf{\varepsilon}(\mathbf{u}^h) - \mathbf{\varepsilon}^\delta\|^2 + \|\mathbf{\kappa}(\mathbf{u}^h) - \mathbf{\kappa}^\delta\|^2 + \lambda \|\mathbf{\gamma}(\mathbf{u}^h) - \mathbf{\gamma}^\delta\|^2
$$

$$
\|\mathbf{\varepsilon}(\mathbf{u}^h) - \mathbf{\varepsilon}^\delta\|^2 = \frac{1}{n} \sum_{i=1}^{n} \left[\mathbf{\varepsilon}(\mathbf{u}^h)_{x_i} - \mathbf{\varepsilon}^\delta_i \right]^2
$$

Euclidean squared norm in terms of membrane strains

$$
\|\mathbf{\kappa}(\mathbf{u}^h) - \mathbf{\kappa}^\delta\|^2 = \frac{\Omega^e}{n} \sum_{i=1}^{n} \left[\mathbf{\kappa}(\mathbf{u}^h)_{x_i} - \mathbf{\kappa}^\delta_i \right]^2
$$

Norm in terms of bending curvatures

$$
\|\mathbf{\gamma}(\mathbf{u}^h) - \mathbf{\gamma}^\delta\|^2 = \frac{1}{n} \sum_{i=1}^{n} \left[\mathbf{\gamma}(\mathbf{u}^h)_{x_i} - \mathbf{\gamma}^\delta_i \right]^2
$$

Norm in terms of transverse shear strains

$\mathbf{\varepsilon}^\delta_i, \mathbf{\kappa}^\delta_i, \mathbf{\gamma}^\delta_i$

Arrays of discrete measured strains at x_i
Strain-displacement relations

\[
\epsilon = \begin{bmatrix}
\epsilon_{xo} \\
\epsilon_{yo} \\
\gamma_{x yo}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial}{\partial x} & 0 & 0 & 0 & 0 \\
0 & \frac{\partial}{\partial y} & 0 & 0 & 0 \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
u \\
v \\
w \\
\theta_x \\
\theta_y
\end{bmatrix}
\]

\[
u^h \equiv N d \quad \text{C}^0 \text{ interpolated displacements}
\]

\[
\kappa = \begin{bmatrix}
\kappa_{xo} \\
\kappa_{yo} \\
\kappa_{x yo}
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & \frac{\partial}{\partial x} & 0 \\
0 & 0 & \frac{\partial}{\partial y} & 0 & 0 \\
0 & 0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0
\end{bmatrix} \begin{bmatrix}
u \\
v \\
w \\
\theta_x \\
\theta_y
\end{bmatrix}
\]

\[
\gamma = \begin{bmatrix}
\gamma_{xzo} \\
\gamma_{yzo}
\end{bmatrix} = \begin{bmatrix}
0 & 0 & \frac{\partial}{\partial x} & 0 & 1 \\
0 & 0 & \frac{\partial}{\partial y} & 1 & 0
\end{bmatrix} \begin{bmatrix}
u \\
v \\
w \\
\theta_x \\
\theta_y
\end{bmatrix}
\]

Measured strains

\[
\epsilon_{xo}^\delta = \frac{1}{2} (\epsilon_{xx}^+ + \epsilon_{xx}^-),
\]

\[
\kappa_{xo}^\delta = \frac{1}{t} (\epsilon_{xx}^+ - \epsilon_{xx}^-)
\]

[Diagram of strain gauge]
Linear Equations

Minimize element smoothing functional

$$\Phi^\lambda(u^h) = \|\varepsilon(u^h) - \varepsilon^\delta\|^2 + \|\kappa(u^h) - \kappa^\delta\|^2 + \lambda \|\gamma(u^h) - \gamma^\delta\|^2$$

And summing on all elements results in

$$Kd = F \quad \text{Ultra-fast solution}$$

$$K \equiv K(x_i) \quad \text{Symmetric and positive definite}$$

$$d \equiv d(u) \quad \text{Vector of displacement dof's}$$

$$F \equiv F(\varepsilon^\delta) \quad \text{R.h.s. "load" vector}$$
MIN3 and its Inverse Element, MIN3⁻¹

Direct FEM: MIN3, 3-node plate ('85)
- C⁰ kinematic interpolations
 - u, v, θₓ, θᵧ -- linear
 - w -- anisoparametric quadratic
 - Membrane and bending strains constant

Inverse FEM: MIN3⁻¹, 3-node element
- C⁰ kinematic interpolations as MIN3
- Least squares formulation:
 - Minimize: Φ
 - Loads and materials unspecified

Principle of Min. Potential Energy:
- Minimize: Π
- φ² K_{shear} (MIN3*)

[Diagram of triangle element with degrees of freedom (dof) u, v, w, θₓ, θᵧ and Ωₑ]
Inverse FEM: Mapping of strain data

Arbitrary distribution of strain sensors on Idealized Wing model

Mapping I: 1-to-1

Mapping II: n-to-1
Numerical Experiment: Idealized Wing Model

- Aluminum panel clamped at left end
- Loads
 - Uniform pressure
 - Twisting forces
 - In-plane forces
- Ultra-thin plate: span/thickness=6*10^4
FEM (MIN3*):
Convergence of Deflection and Bending Rotation

※ MIN3* strains will be used to represent experimental data
Low-Fidelity FEM (MIN3*) Strain Distributions, i.e.
Low Quality "Experimental Data"
MIN3\(^{-1}\) Displacement Reconstruction from MIN3\(^*\) strain data

Mapping l (1-1)

FEM (MIN3\(^*\)) strains

MIN3\(^{-1}\) discretization

Results @ node A

\[
\lambda = 10^{-6}
\]

\[
100 \frac{(w - w_{inv})}{w}
\]

%Error in w

dof

\[
\lambda = 10^{-6}
\]

\[
100 \frac{(w - w_{inv})}{w}
\]

MF

HF

LF

All other displacement variables reconstructed precisely across panel
High-Fidelity FEM (MIN3*) Strain Distributions. i.e. Accurate "Experimental Data"
Study of Lambda Parameter

Mapping I (1-1)

Results @ node A

High Fidelity

FEM (MIN3*) strains

High Fidelity

MIN3⁻¹ discretization

* In-plane displacements, u and v, reconstructed precisely across panel
Study of Lambda Parameter

Mapping II (n-1)

High Fidelity

FEM(MIN3*) strains

Low Fidelity

Inverse FEM (MIN3⁻¹)

Results @ node A

\[\varepsilon^\delta = \varepsilon^* (1 + 0.05 \times \delta), \]
\[\delta \in [-1, 1] \text{ (pseudorandom number)} \]
Remarks on Numerical Results

- MIN3\(^{-1}\) is exact inverse of MIN3
 - In 1-1 mapping of MIN3 strains, MIN3\(^{-1}\) reconstructs all displacements precisely

- MIN3* more accurate in bending than MIN3

- Shear locking eliminated via anisoparametric interpolation

- Mapping I (1-1)
 - Effect of Lambda is insignificant

- Mapping II (n-1)
 - Serves as filter/smooth
 - "Optimal" Lambda
 - Strains with random error "smoothed" effectively
Concluding Remarks

- Standard FEM architecture
- Arbitrary topology application
- Static and dynamic problems
- Small and large displacements (incremental linear approach)
- Thin and thick beams, plates, shells, solids and built-up structures
- Sensor location optimization
- Ultra-fast computations