An Inverse Finite Element Method for Reconstruction of Elastic Deformations in Beam, Plate and Shell Structures

Alex Tessler
Analytical and Computational Methods Branch
NASA Langley Research Center, Virginia, U.S.A.

Jan L. Spangler
Lockheed Martin Aeronautics Company
NASA Langley Research Center, Virginia, U.S.A.
Structural health monitoring

- Civil and aeronautical structures
- Fiber optic Bragg-grating sensors measure
 - Strains
 - Temperatures
- Full-field quantities of interest (in real time)
 - Displacements (morphing wing, radar antenna)
 - Strains
 - Stresses
 - Failure criteria
Objective

- Develop fast and robust algorithm for reconstruction of full-field displacements from measured strains – an inverse problem
Approach

- Minimize Error Functional (variational principle)
- Inverse Boundary Value Problem
- Inverse FEM (Strain Integration Algorithm)
Outline

- Inverse reconstruction problem
- First-order shear deformation theory
- Penalty error functional
- Inverse finite element method
- Computational validation
- Computational-experimental validation
- Summary
Inverse reconstruction problem

- Inverse problems are ill-posed
 - Do not satisfy conditions of existence, uniqueness, and stability
- Uniqueness
 - various strains and boundary conditions that correspond to nearly same displacements
- Instability
 - Small disturbances in measured data (strains) cause great changes in solution (displacements)
- Tikhonov's regularization method
 - Improves robustness of algorithms by enforcing additional physical constraints ensuring smoothness of solution
First-order shear deformation theory

- Displacements

\[u_x(x, y, z) = u + z \theta_y \]
\[u_y(x, y, z) = v + z \theta_x \]
\[u_z(x, y, z) = w \]
Strain-displacement relations

- In-plane strains

\[
\begin{align*}
\begin{bmatrix}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\gamma_{xy}
\end{bmatrix} &= \begin{bmatrix}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\gamma_{xy}
\end{bmatrix} + \begin{bmatrix}
K_{xx} \\
K_{yy} \\
K_{xy}
\end{bmatrix} \\
&= \begin{bmatrix}
\frac{\partial^2}{\partial x^2} \\
\frac{\partial^2}{\partial y^2} \\
\frac{\partial^2}{\partial x \partial y}
\end{bmatrix} \begin{bmatrix}
u \\
v \\
w \\
\theta_x \\
\theta_y
\end{bmatrix} \\
&= \begin{bmatrix}
0 & 0 & 0 & \frac{\partial^2}{\partial x} & 0 \\
0 & 0 & \frac{\partial^2}{\partial y} & 0 & 0 \\
0 & 0 & 0 & \frac{\partial^2}{\partial x \partial y} & 0 \\
\frac{\partial^2}{\partial x} & \frac{\partial^2}{\partial y} & \frac{\partial^2}{\partial x \partial y}
\end{bmatrix}
\end{align*}
\]

- Transverse shear strains

\[
\gamma = \begin{bmatrix}
\gamma_{xzo} \\
\gamma_{yzo}
\end{bmatrix} = \begin{bmatrix}
0 & 0 & \frac{\partial^2}{\partial x} & 0 & 1 \\
0 & 0 & \frac{\partial^2}{\partial y} & 1 & 0
\end{bmatrix}
\]

Measured strains

\[
\begin{align*}
\mathbf{\varepsilon}_{xo} & \delta = \frac{1}{2} \left(\mathbf{e}_{xx}^+ + \mathbf{e}_{yy}^- \right) \\
\mathbf{\varepsilon}_{yo} & \quad \mathbf{\gamma}_{xyo} = \frac{1}{2} \left(\mathbf{e}_{xx}^+ - \mathbf{e}_{yy}^- \right) \\
\mathbf{k}_{xo} & \delta = \frac{1}{2t} \left(\mathbf{e}_{xx}^+ - \mathbf{e}_{yy}^- \right) \\
\mathbf{k}_{yo} & \quad \mathbf{k}_{xyo} = \frac{1}{2t} \left(\mathbf{e}_{xx}^+ \right) \\
\end{align*}
\]

In thin plates "measured" shear strains can be omitted

Top strain gauge

Bottom strain gauge
Error smoothing functional

- Find an extremum of the smoothing functional for a fixed value of penalty parameter \(\lambda \)

\[
\Phi^\lambda(u^h) = \|\varepsilon(u^h) - \varepsilon^\delta\|^2 + \|\kappa(u^h) - \kappa^\delta\|^2 + \lambda \|\gamma(u^h) - \gamma^\delta\|^2
\]

Euclidean squared norms

\[
\|\varepsilon(u^h) - \varepsilon^\delta\|^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\varepsilon(u^h)_{x_i} - \varepsilon^\delta_{x_i}\right)^2
\]

\[
\|\kappa(u^h) - \kappa^\delta\|^2 = \frac{\Omega_e}{n} \sum_{i=1}^{n} \left[\kappa(u^h)_{x_i} - \kappa^\delta_{x_i}\right]^2
\]

\[
\|\gamma(u^h) - \gamma^\delta\|^2 = \frac{1}{n} \sum_{i=1}^{n} \left[\gamma(u^h)_{x_i} - \gamma^\delta_{x_i}\right]^2
\]

- Weights in error functional \(\{1, 1, \lambda\} \)

- 2nd and 3rd terms coupled

- Generally \(\lambda \ll 1 \)

\(\varepsilon_i^\delta, \; \kappa_i^\delta, \; \gamma_i^\delta \) Arrays of measured strains at \(x_i \)
Special case: Thin plates and shells

- 3rd term

\[\lambda \| \gamma(u^h) - \gamma^\delta \|^2 = \frac{\lambda}{\Omega^e} \int_{\Omega^e} \gamma(u^h)^2 \, dx \, dy \]

- Kirchhoff constraints enforced

\[
\begin{bmatrix}
\gamma_{xzo} \\
\gamma_{yzo}
\end{bmatrix} \equiv \begin{bmatrix}
w_x + \theta_y \\
w_y + \theta_x
\end{bmatrix} \to 0
\]
Kinematic interpolations for inverse flat shell element (MIN3⁻¹)

\[\mathbf{u}^h \equiv \{ u, v, w, \theta_x, \theta_y \} = N \mathbf{d} \]

- \(u \): linear
- \(v \): linear
- \(w \): quadratic
- \(\theta_x \): linear
- \(\theta_y \): linear

u^h \equiv N d anisoparametric

N: \(C^0 \) - continuous shape functions

d: displacement dof's

\[\{ \varepsilon_{x0}, \varepsilon_{y0}, \gamma_{xy0} \} \text{ constant} \]

\[\{ K_{x0}, K_{y0}, K_{xy0} \} \text{ constant} \]

\[\{ \gamma_{xzo}, \gamma_{yzo} \} \text{ linear} \]

Tessler-Hughes, CMAME (1985)
Inverse FEM equations

- Minimize sum of element contributions

\[\delta \left[\sum_{e=1}^{N} \Phi_e \lambda(u^h) \right] = 0 \]

results in

\[d = K^{-1} F \]

\(K \equiv K(x_i) \) Symmetric, positive definite
\(d \equiv d(u) \) Displacement dof's
\(F \equiv F(\varepsilon^{\delta}) \) r.h.s. vector

Fast computation
Computational validation

- Direct FEM solution
 - Mesh, materials, loads and B.C.'s
 - Output strains at optimal points
- Inverse FEM solution
 - Direct analysis strains used as "experimental" strains
 - "Experimental" strains mapped onto inverse FEM mesh
 - Apply same kinematic B.C.'s as in direct analysis
 - Solve inverse FEM equations to obtain displacements
- Comparison
 - reconstructed displacements vs. displacements from direct analysis
Inverse FEM: Mapping of strains

Arbitrary distribution of strain sensors on Wing model

1-to-1

Inverse FEM mesh

Element centroid

n-to-1
Idealized wing: Direct FE analysis

- Clamped AL panel
- Loads
 - Uniform pressure
 - Twisting forces
 - In-plane forces
- Span / thickness = 6*10^4

Direct FEM

<table>
<thead>
<tr>
<th>Element</th>
<th>Interpolations</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN3</td>
<td>u^h</td>
</tr>
</tbody>
</table>

Low-Fidelity (LF)

Medium-Fidelity (MF)

High-Fidelity (HF)

June 21-24, 2003
Direct FE analysis

Deflection

Convergence of

\((w, \theta_y)_{\text{point A}}\)

Norm. Displ. @ A

\(\text{dof}\)

June 21-24, 2003
Inverse FEM using 1-1 mapping of strains from MIN3 analysis

\[\varepsilon^\delta_i \text{ @ centroids} \]

\[\text{MIN3} \]

\[\lambda = 10^{-6} \]

MIN3

- **Exact reconstruction** of

\[(u, v, w, \theta_x, \theta_y) \]

for all meshes
Inverse FEM using n-1 mapping of strains from MIN3 analysis

Direct FEM

\text{MIN3}

\varepsilon_i^{\delta} @ centroids

Inverse FEM

\text{MIN3}^{-1}

Lambda study

% Error in w, \theta_y

MAFELAP-2003
Inverse FEM

June 21-24, 2003
Strains with Random Error

\[\varepsilon^\delta = \varepsilon^* (1 + 0.05 \delta), \]
\[\delta \in [-1, 1] \text{ (pseudorandom number)} \]
Remarks on Numerical Results

- $\text{MIN}3^{-1}$ exact inverse of $\text{MIN}3$
 - Perfect correspondence in 1-1 mapping
 - Strains sampled at element centroids
- No thin-regime limitations
- Lambda parameter ensures robustness
 - Serves as filter/smooth for n-1 mapping
 - Strains with random error "smoothed" effectively
Computational-experimental validation

- Aluminum plate, 2024-T3 alloy
 - Elastic properties: $E=10.6$ Msi, $n=0.33$
 - Dimensions: 10"x3"x1/8"
- Force applied at (9", 1.5")
 - $P = 5.784$ lb (2623 g)

All dimensions in inches
Experiment

DCDT measuring deflection @ (8/7/16, 1 1/2)

Plate instrumented with 28 strain rosettes and DCDT
FE Modeling of Experiment

Triangular Element Meshes

Low Fidelity (LF)
- 28 elements
- 24 nodes

Medium Fidelity (MF)
- 216 elements
- 133 nodes

High Fidelity (HF)
- 864 elements
- 481 nodes
FEM convergence study of tip deflection

- Linear response
 - differences between linear and nonlinear solutions less than 0.01%
Comparison of Deflection

Direct FEM
High-Fidelity Mesh
Max. W = 0.2699 in

Inverse FEM
ε^g from test
Low-Fidelity Mesh
Max. W = 0.2701 in

June 21-24, 2003
Summary

Variational principle and robust inverse FEM developed for full-field displacement reconstruction from measured strains

- Thin and moderately thick
 - Beams, plates and flat shells
 - Linear response

- Method inherently regularized
 - Strain-displacement relations enforced
 - Integrability (strain compatibility) conditions fulfilled
 - Strain-sensor location and mesh/interpolation dependency

- Standard FEM architecture
 - Accommodates complex structures
 - Independent of material properties
 - Computationally efficient

MAFELAP-2003
Inverse FEM

June 21-24, 2003
Summary (cont.)

- Superior reconstruction quality
 - Computational validation
 - Computational-Experimental validation
- Future extension to
 - Large displacement response
 - Non-collocated strain measurements
 - Full-field reconstruction of strains, stresses, and failure criteria
 - Curved shells
 - Built-up structures