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Motivation:   Sensing of wing deformations 

FBG strain sensing – wing deformation (inverse reconstruction, ill-posed problem)

onh h h ε Lu

Conforming antenna on 
AEW&C (airborne radar system)
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Strain-displacement relations



Shape sensing: from in-situ strains to deformed shape

Hat-stiffened panel: 
full-field solution

FBG sensor
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Vehicle Health Management

Objectives

• Affordable, safe and reliable technologies for aeronautic and long-duration space 

structures

– Provide real-time vehicle health information via sensors, software and design by 

monitoring critical structural, propulsion, and thermal protection systems

– Provide valuable information to adaptive control systems to mitigate accidents 

due to failure and achieve safe landing

– Provide detection and localization of impact events on key structural and flight 

control surfaces

– Utilize decision-making mechanisms using intelligent reasoning based on safe-

outcome probability

– Maximize performance and service life of vehicle or space structure
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Continuous Monitoring and Assessement of 
Structural Response in Real Time

• Diagnosis and prognosis of structural 
integrity

– Deformation

– Temperature

– Strains and stresses (internal 
loads)

– Damage and failure
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Maximize Performance: 
Provide Active Structural Control via Shape Sensing

– Helios class of aircraft (solar panel) 

• Control of wing dihedral 

– Unmanned Aerial Vehicles (UAV)

– Morphing capability aircraft

• Shape changes of aircraft wing

– Embedded antenna performance

– Shape control of large space structures

• Solar sails

• Membrane antennas

 

Shape Control of Space Structures

Wing control systems
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• Diverse arrays of distributed in-situ sensors

– Process, communicate, and store massive amounts of SHM data

– Perform on-board structural analysis based on SHM sensing data

• Determine deformed shape of  structure continuously

• Perform diagnosis and prognosis of structural integrity

– Provide information of structural integrity to cockpit displays and 

remote monitoring locations to enable safe and effective 

operational vehicle management and mission control

– Provide valuable information to improve future designs 

Implementation & enabling capabilities



NASA Dryden Shape-Sensing Analysis

Method for Real-Time Structure Shape-Sensing, U.S. Patent No. 7,520,176, issued April 21, 2009.

• 1-D integration of classical beam Eqs for 
cantilevered, non-uniform cross-section 
beams (no shear deformation)

• Piecewise linear approximation of 
strain and taper between regularly 
spaced “nodes” where  strains are 
measured

• Neutral axis is computed from detailed 
FEM (SPAR code)

• Incorporates cross-sectional geometry 
of a wing in a beam-type approximation

View from above the left wing
(Optical fiber is glued on top of wing)
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NASA Dryden Shape-Sensing Analysis



NASA LaRC High-Fidelity, Full-Field Inverse FEM

Wing

Composite 
and sandwich
structuresAircraft

Frame

 ext
, , , ( , ) 0u ε σ f ε σ F

From strains measured at discrete 

locations, determine full-field 

continuous displacements, strains, and 

stresses that represent the measured 

data with sufficient accuracy 
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Conceptual Framework of Inverse FEM:
Discretized, high-fidelity solution

1. Discretization with iFEM:

– beam, plate, shell or solid 

2. Elements defined by a continuous displacement 
field 

3. Strains defined by strain-displacement relations

4. Experimental strain-gauge data and iFE strains 
match up in a least-squares sense

5. Displacement B.C.’s prescribed

6. Linear algebraic Eqs determine nodal 
displacements

7. Element-level substitutions yield full-field 
strains, stresses (internal loads), and failure 
criteria
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First-Order Shear Deformation Theory:
Flat inverse-shell element

• Kinematic assumptions account for 
deformations due to

– Membrane

– Bending

– Transverse shear
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Experimental in-situ strains
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Full-Field Reconstruction using iFEM

• Least-Squares variational formulation

– Plate formulation based on first-order shear 

deformation theory

– Strain compatibility equations fulfilled

– Strains treated as tensor quantities

– No dependency on material, inertial or 

damping properties

– Efficient elements for

– Beams and frames

– Plates and shells

– Application to metal, multilayer composite, 

and sandwich structures 

2 2 2
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:ip Positive valued weighting constants
– put different importance on the 
satisfaction of the individual strain 
components and their adherence to the 
measured data



Discretization using iMIN3 elements

• Variational principle
symmetric, positive definite 

matrix (B.C.’s imposed)
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• Linear Eqs

Coarse discretization sufficient 
(more efficient than direct FEM)

strain rosette
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• Efficient solution



Attributes of Inverse FEM

• Computational efficiency, architecture 

and modeling

– Architecture as in standard FEM 

(e.g., user routine in ABAQUS)

– Superior accuracy on coarse meshes 

(advantage of integration)

– Beam, frame, plate, shell and built-

up structures

– Thin and moderately thick regime

– Low and higher-order elements

– Use of partial strain data (over part 

of structure, or incomplete strain 

tensor data)

• Theory

– Strain-displacement relations fulfilled

– Least-squares compatibility with 

measured strain data

– Integrability conditions fulfilled

– Independent of material properties

– Stable solutions under small changes in 

input strain data (random error in 

measured strain data)

– Geometrically linear and nonlinear (co-

rotational formulation) response

– Dynamic regime

• Studies performed

• Beam, frame, plate, and built-up shell structures

• Experimental studies using FBG strains and strain rosettes

• Transient dynamic response and strain data



iFEM applied to Plate Bending

• FBG sensors

• Strain rosette data

• Incomplete strain data



Cantilevered Plate: iFEM using experimental strains

• Aluminum 2024-T3 alloy

- Elastic modulus:  10.6 Msi

- Poisson’s ratio:    1/3

- Thickness:           1/8 in

• Weight loaded at (9 in,1.5 in)

- P = 5.784 lb (2623 g)

3/4 in

9 in 1 in3 in

3 in

3/8 in

x

y

3/8 in

Strain rosette

Applied force
Clamped
Edge

3/8 in
3/2  in

* A. Tessler & J. Spangler. EWSHM (2004);  P. Bogert et al., AIAA (2003)



Max. deflection
W = 6.855 mm

Max. deflection
W = 6.860 mm

FEM (ABAQUS) iFE Rossette strains

Deflection comparison
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Slender Beam Experiment using FOSS/iFEM*

Cantilever beam instrumented with FOSS fiber. 
Deflection predicted from strain measurements via 
Inverse FEM.Beam sensor layout and iFEM mesh

Excellent correlation 
of deflection
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Measured and computed 
strain data

*  S. Vazquez et al., NASA-TM (2005) 21



Predicts an accurate full-field deformation with a 
maximum deflection error of less than 1.5%. Only strain 
rosette measurements along panel edges are used in the 
analysis.

Strain rosettes distributed along edges of plate

Predicted deflection error < 1.5%

Impact:

The iFEM is well-suited for real-
time monitoring of the aircraft 
structural response and 
integrity when used in 
conjunction with advanced 
strain-measurement systems 
based on Fiber-Optic Bragg 
Grading strain sensors.

Cantilevered AL Plate in Bending under Uniform Load: 
Application of iFEM with Incomplete Strain Data

( 1,2,3) : weighting constants are set small

                         in elements that do not have strain data

ip i 

2 2 2
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3-D Inverse Frame Finite Element Formulation*

Transfer vehicles

Power systems
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3-D Frame iFEM Formulation

Kinematic assumptions

• Strains
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Numerical assessment

• Forward and Inverse FEM model data

Element  type NASTRAN (QUAD 4) Inverse beam FE

No. of nodes 3.29x105 8 (48 dofs)

No. of elem. 3.28x105 8

F
N2

N3

N6

N7

dof   iFEM/NASTRAN 

u2 1.008 

v2 1.002 

w2 1.002 

 x2 1.003 

 y2 1.007 

 z2 1.010 

u3 1.007 

v3 1.002 

w3 1.002 

 x3 1.003 

 y3 1.007 

z3 1.010 

u6 1.008 

v6 1.001 

w6 0.996 

 x6 0.995 

 y6 1.007 

z6 1.010 

u7 1.007 

v7 1.002 

w7 0.996 

 x7 0.995 

 y7 1.007 

z7 1.009 

 

• Frame structure (thin-wall cross-section)

25



Tip beam deflection wmax loaded by a transverse concentrated force Fz at 
f0=1,400 Hz

Transient response of damped cantilever beam:
iFEM solution vs. high-fidelity NASTRAN model
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Multifunctional Sandwich Panel

- Radiation shield
- Damage tolerant
- Thermal protection

iFEM based on Refined Zigzag Theory
for Multilayered Composite and Sandwich Structures

Airbus AA587

Composite 
Vertical Tail
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Summary

• On-board structural integrity of nextgen aircraft, spacecraft, 

large space structures, and habitation structures

– Safe, reliable, and affordable technologies

• Inverse FEM  algorithms using FBG strain measurements

– Real-time efficiency, robustness, superior accuracy

– Large-scale, full-field applications

• Inverse FEM theory

– Strain-displacement relations & integrability conditions 

fulfilled

– Independent of material properties

– Solutions stable under small changes in input data

– Linear and nonlinear response
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Summary (cont’d)

• Inverse FEM’s architecture/modeling

– Architecture as in standard FEM (user routine in ABAQUS)

– Superior accuracy on coarse meshes

– Frames, plates/shell and built-up structures

– Thin and moderately thick regime

– Low and higher-order elements

• Inverse FEM applications

– Computational studies: frame, plate and built-up shell 

structures

– Experimental studies: FBG strains and strain rosettes

– Dynamic strain data

– Zigzag theory for composites
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Collaborations & Interactions

• Lockheed Martin Co (J. Spangler)

• NASA LaRC (S. Vazquez, C. Quach, E. Cooper, and J. Moore)

• University of Hawaii (Prof. R. Riggs)

• Politecnico di Torino (Profs. Di Sciuva and Gherlone)
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Ikhana fiber optic wing shape sensor team: clockwise from left, 
Anthony "Nino" Piazza, Allen Parker, William Ko and Lance 
Richards. 
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