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Inverse problems of wing deflection

FBG (Fiber Bragg Grating) sensor is glued on top of wing to
measure surface strain along axis (NASA Dryden)

Inverse FEM

e Using discrete strain
measurements, € ¢, determine

full-field solutions for .'
— displacements u : ( <
— strains € (u) A < — ‘ S
— stresses 6(u) :
* |ll-posed problem |
e
* Unigueness "8
* Stability e NASA Dryden Fight Research Cenier hoto Cllcion
http://www.dfrc.nasa.gov/Gallery/Photofindex.html

NASA Photo: EDO7-0287-08 Date: December 17, 2007 Photo By: Tony Landis




Variational Formulation based on First-Order
Shear Deformation Theory (Mindlin)



Kinematic Assumptions of First-Order Shear
Deformation Theory

Reference frame (aligned with
strain-measurement directions)

Displacement components
Z, W

u,(X,z) =u(x)+z6,(x)
u, (X,2) =Vv(X)+2 6,(x)
u, (x) = w(x)

X=(X,Yy) (strain-measurement directions)
z e[-t,t] (thickness coordinate)

Deformations Top-surface
— Membrane measured | &, Strain rosettes or
— Bending ZT strains Yy FBG fiber
| |
— Transverse shear [N P 1 ot along x direction
Bottom- g;x
surface &
measured 4

strains Vxy



Strains and Section Strains

* Inplane strains (=6) * Transverse-shear strains (=2)
( h 3 e 3 u
gxx (‘C"l 84 \Y
3 ) [0 0 2 0 1 s
V€W (=62 (T L & ¢ = h Jwl g(u):Lu
88 0 O 2y 1 0 0
\yXYJ L83) \86/ X
6 )
* Section strains -
) fu
3 membrane & % 0 0 0 0}V
section strains &r=l0 &£ 0 0 Oj|yw; e(u)=L"u
&) |4 4% 0 0 0]|b
Hy
3 bending &, 0 0 0 0 %
section strains &r=[0 0 0 &% O |swy k(u)=L"u




Strain measurements relate to membrane &
bending section strains

Surface strains measured at Express measured strains
location X in terms of FSDT
+
top Exx Ce
+ & £
rosette Eyy Exx & €4
+
Vay ey [ =98 TI1&
........... ;._._._.i 2t 7 | £, £
Exx _
bottom o Evaluating at top and bottom
rosette > (z=+t)
Vxy o
- & e 3 C ) N\ & () C )
81 gxx gxx ‘94 8xx gxx
eg=<g$—1<g+ e RN k’9=4<9>:i SEL =R EL b
T 2 - 2 vy yy i 5 2t yy yy
+ - + -
€3 ) v &6 D) Py
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iFEM variational formulation

Minimize an element functional ®_,(U") (a weighted least-squares
smoothing functional ) with respect to the unknown displacement degrees-
of-freedom

O (u") =w,

2

2+Wka(uh)—kg

2 _|_Wg Hg(uh)_gg

e(u")-e’
where the squared norms are

e(u")—e’ g %J&i[e(Uh)i —ef]zdxdy,
= O] Sl -k Ty
2 z%hé[g(uh)i ~g¢ | dxdy

n Number of strain sensors per element

(w,, w,, Wg) Positive valued weighting constants associated with individual
section strains (=8). They place different importance on the
adherence of strain components to their measured values.
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Variational statement

Linear Eqgs (displ. B.S.s prescribed)

KU = f
Displacement solutio

Udof — K_lf

IFEM matrix equations

K(X- ) Symmetric, positive definite
! matrix

udof Nodal displacement vector

f £ RHS vector, function of
(8 ) measured strain values

n

iIFEM integrates and smoothes strain data

Higher accuracy than forward FEM




iIFEM’s selective, element-level (local) regularization

Important special cases

1. An element is missing measured transverse-shear section strains
(standard case); Let o« =10"* (small positive constant)

2
Hg(uh)H szbg(u“)zdx dy (W, =c;w, =w, =1)
2. Anelement is missing all measured section strains (in addition to (1))

He(u“)H2 = [, e(u"ydxdy (W, = @)

Hk(uh)H2 = 202[, k(u")dxdy (w, =)

3. Anelement is missing some measured-strain components

— apply forms (2) to the missing components only



Simple and efficient inverse-shell element: iMIN3

e Anisoparametric interpolations
(Tessler-Hughes, CMAME 1985)

(u,v,6,,6,): linear shape functions 2w z e[t 1]

W: quadratic

e Section-strain fields
e(u"), k(u"): constant
g(u"): linear
e 3 nodes, 5 or 6 dof/node
O (uv,w,6,6,): 5dofiplate
(uv.w,6,.6,,6,): 6 dofishell
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Demonstration problem
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FEM shell model:
Aluminum stiffened flap with two rectangular cut-outs

. Model has 10 planar

Elastostatic deformations element groups
(ABAQUS/STRI3 (Batoz) 3-node element, no shear e Each group has its own
deformation; 6 section strains only) material reference frame to
define strain orientations
Un-Deformed \ :
_ 17\ 12in
> = =, it

lF =(1, 50)

causes geometrically
nonlinear response

Deformed

12
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Linear problem: % error in reconstructed displacement, u

—u

Max

% Error (uz) — uz—Refi z—Esti xlOO
u

Model A: Six FEM section X U, U3
. +4.524e-01
strains are mapped onto all , % +4.1470-01
= +3.770e-01

<
<7557
Z75&

. +3.393¢-01
iIFEM elements +3016e.01
e +2.639%e-

e +2.262¢-01

LT 7 +1.8850-01
+1.508e-01
+1.131e-01
+7.539¢-02
+3.770e-02
+0.000e+00

0.45%

U, u3
+6.978e-01
+6.397e-01

Model B: Six FEM ti +5.8150-01
odel b: SIX section +5.234¢-01
. +4.652e-01
strains are mapped only onto +4.071e-01

. . +3. =
perimeter iFEM elements 12908001
e +17450.01
B RS IS +1.1630-01
+5.815e-02
+0.000e+00

U, us

e

+1. e+
Model C: Two FEM section 19238001
strains (axial) are mapped only +6508001
. . 5.579e-01
onto perimeter iFEM elements o +4.6490.01
-
= = +1.8606-01
+9.298e-02
+0.000e+00
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Linear problem: Deviations in u,

Pearson correlation, r

iFEM 0% noise 5% noise
model in strains in strains
A 1.00000 0.99998
B 0.99999 0.99998
C 0.99998 0.99985

RMS
iIFEM 0% noise 5% noise
model in strains  in strains
A 0.00017 0.00096
B 0.00020 0.00074
C 0.00035 0.00098

Mean % error

iIFEM
model

0% noise 5% noise
in strains  in strains

0.1951 1.0505
0.1934 0.8353
0.3575 1.0769

15




Linear problem: % error in reconstructed von Mises
stress (bottom shell surface)

x f % Error (o) = % x100

Model A: Six FEM section
strains are mapped onto all
iFEM elements

+3.446e+00
+3.159e+00
+2.872e+00
+2.585e+00
+2.298e+00
+2.011e+00
+1.723e+00
+1.436e+00
+1.149e+00
+8.618e-01
+5.746e-01
+2.874e-01
+2.525¢-04

+2.339e+01
+2.144e+01
+1.949e+01
+1.7540+01
+1.559e+01
+1.364e+01
+1.169e+01
+9.7460+00
+7.797e+00
+5.848e+00
+3.899e+00
+1.950e+00
+1.102e-03

Model B: Six FEM section
strains are mapped only onto
perimeter iFEM elements

+1.772e+01
+1.624e+01
+1.477e+01
+1.329e+01
+1.181e+01
+1.034e+01
+8.860e+00
+7.383e+00
+5.907e+00
+4.430e+00
+2.953e+00
+1.477e+00
+3.027e-04

Model C: Two FEM section
strains (axial) are mapped only
onto perimeter iFEM elements

16



Linear problem: Deviations in von Mises stress

Pearson correlation, r

N
Z, 1(6Ref| GRef)(GESTl Ceg)

\/Z -1 GRefI GRef \/ZI l(GEStI cyEst)

Root-Mean-Square error

RMS = \/ZiN_l(GREFi —Oksri )2

N

Mean % error

- ZN GRefl =

GRef

x100

17

Pearson correlation, r

iFEM 0% noise 5% noise

model in strains in strains

A 0.9994 0.9993

B 0.9842 0.9844

C 0.9903 0.9896
RMS

iIFEM 0% noise 5% noise

model in strains  in strains

A 4.0149 5.72724

B 21.9314 23.4736

C 15.7996 16.9735
Mean % error

iIFEM 0% noise 5% noise

model in strains  in strains

A 0.3786 0.5553

B 1.6796 1.8404

C 1.3501 1.5133




iIFEM incremental algorithm for nonlinear deformations

e Use Nonlinear FEM as a virtual experiment (Lagrangean reference
frame)

At each load increment of NL-FEM, compute the incremental section
strains (6 components) that represent measured strain increments

Perform iFEM analysis using the strain increments to obtain the
displacements and rotations

Update the geometry of iFEM mesh due to deformation using iFEM
determined displacements, i.e., Xx;=x,+u,

Perform iFEM using the strain increments of the next load increment, and
update the geometry for the next step x,=x,+u,

18




Nonlinear problem, F=50: Displacement magnitude (full load)

U, Magnitude F E M

+3.371e+00
+3.090e+00
+2.809e+00
+2.528e+00
+2.247e+00
+1.966e+00
+1.685e+00
+1.404e+00

Reference: Nonlinear FEM/ABAQUS +1:124e400
STRI3 +5.618e-01
( ) +2.0000200 A
'4,5» A F T =

="

U, Magnitude
430520400
+3. e+ .

+2.7756+00 IFEM (|V|Od€| C)
+2.497¢+00

+2.220e+00 Max /. . Max o — 1 50
+1.942e+00 (1-u™fugy ) x100% =1.2%
+1.665e+00 €
+1.387e+00
+1.110e+00
+8.3250-01
+5.5500-01
+2.7750-01
+0.000e+00

Model C: Two FEM section
strains (axial) are mapped only
onto perimeter iFEM elements
(simulating FBG strains)

No measured
strains in the
stiffener
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Nonlinear problem: Displacement magnitude (full load)

of the stiffener

Reference: Nonlinear FEM/ABAQUS
(STRI3)

Model C: Two FEM section
strains (axial) are mapped only
onto perimeter iFEM elements
(simulating FBG strains)

20

FEM

U, Magnitude
+2.298e+00
+2.196e+00
+2.095e+00
+1.994e+00
+1.892e+00
+1.791e+00
+1.690e+00
+1.588e+00
+1.487e+00
+1.386e+00
+1.285e+00
+1.183e+00
+1.082e+00

iIFEM (Model C)

(2-u™*/uM>) x100% =1.5%

U, Magnitude

+2.2636+00
i +2.164e+00

+2.0646+00 4
+1.965¢+00
+1.865+00
+1.7666+00
_ | +1.666e+00
+1.567e+00
+1.4686+00

+1.368e+00
+1.269e+00
+1.169e+00

+1.070e+00




Nonlinear problem: Von Mises stress (full load)

Reference: Nonlinear
FEM/ABAQUS (STRI3)

Model C: Two FEM section
strains (axial) are mapped only
onto perimeter iFEM elements
(simulating FBG strains)

S, Mises
SNEG, (fraction = -1.0)
+2.867e+04
+2.629e+04
+2.390e+04
+2.151e+04
+1.912e+04
+1.674e+04
+1.435e+04
+1.196e+04
+9.576e+03
+7.189e+03
+4.801e+03
+2.414e+03
+2.710e+01

PDLOAD

+2.631e+04
+2.413e+04
+2.195e+04
+1.977e+04
+1.760e+04
+1.542e+04
+1.324e+04
+1.106e+04
+8.886e+03
+6.709e+03
+4.531e+03
+2.3540+03
+1.7630+02

21

FEM

iFEM (Model C)

Max Max
(1'0- / O Ref

)%x100% = 8.2%




Summary

On-board SHM of nextgen aircraft, spacecraft, large space
structures, and habitation structures

— Safe, reliable, and affordable technologies

Inverse FEM algorithms for FBG strain measurements
— Real-time efficiency, robustness, superior accuracy
— Stable full-field solutions

Inverse FEM theory

— Strain-displacement relations & integrability conditions
fulfilled

— Independent of material properties
— Solutions stable under small changes in input data

— Linear and nonlinear response

22




Summary (cont’d)

e Inverse FEM'’s architecture/modeling
— Architecture as in standard FEM (user routine in ABAQUS)
— Superior accuracy on coarse meshes
— Frames, plates/shell and built-up structures
— Thin and moderately thick regime
— Low and higher-order elements
e Inverse FEM applications
— Computational studies: plate and built-up shell structures

— Experimental studies with plates: FBG strains and strain
rosettes

23



Summary (cont’d)

e Inverse FEM'’s architecture/modeling
— Architecture as in standard FEM (user routine in ABAQUS)
— Superior accuracy on coarse meshes
— Frames, plates/shell and built-up structures
— Thin and moderately thick regime
— Low and higher-order elements
e Inverse FEM applications
— Computational studies: plate and built-up shell structures

— Experimental studies with plates: FBG strains and strain
rosettes
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