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Inverse problems of wing deflection 

FBG (Fiber Bragg Grating) sensor is glued on top of wing to 
measure surface strain along axis (NASA Dryden) 

  

•  Using discrete strain 

measurements, ɛ ɛ, determine 

full-field solutions for  

‒ displacements u 

‒ strains ɛ (u)  

‒ stresses Ϭ(u)  

• Ill-posed problem 

• Uniqueness 

• Stability 

Inverse FEM 
 



Variational Formulation based on First-Order 
Shear Deformation Theory (Mindlin) 



Kinematic Assumptions of First-Order Shear 
Deformation Theory 

• Deformations 

– Membrane 

– Bending 

– Transverse shear 
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Strain rosettes  or 
FBG fiber 
along x direction 

• Displacement components 

Top-surface 
measured 
strains 

Bottom-
surface 
measured 
strains 
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      Reference frame (aligned with 
strain-measurement directions) 



Strains and Section Strains 
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•     Section strains 
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3 membrane 
section strains 

3 bending 
section strains 
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•     Inplane strains (=6) •     Transverse-shear strains (=2) 



Strain measurements relate to membrane & 
bending section strains 
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Express measured strains 
in terms of FSDT 

Evaluating at top and bottom 
(              )  

Surface strains measured at 
location  
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Cannot be obtained from surface strains 



iFEM variational formulation 

Minimize an element  functional                   (a weighted least-squares 

smoothing functional )  with respect to the unknown displacement degrees-

of-freedom 
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Positive valued weighting constants associated with individual 
section strains (=8). They place different importance on the 
adherence of strain components to their measured values. 

( , , )e k gw w w

n Number of strain sensors per element 
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• Variational statement 

   

iFEM matrix equations 

Symmetric, positive definite 
matrix 

dofu

( )iK x

Nodal displacement vector 

( )f ε
RHS vector, function of 
measured strain values 
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•     Linear Eqs (displ. B.S.’s prescribed) 

• iFEM integrates and smoothes strain data 

• Higher accuracy than forward FEM 

1
dof

u K f

•    Displacement solution 



iFEM’s selective, element-level (local) regularization 

1.   An element is missing  measured transverse-shear section strains 

(standard case); Let  
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2.    An element is missing all measured section strains (in addition to (1)) 
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3.    An element is missing some measured-strain components 

‒ apply forms (2) to the missing components only 

Important special cases 

410 (small positive constant) 



Simple and efficient inverse-shell element: iMIN3 

• Anisoparametric interpolations 
(Tessler-Hughes, CMAME 1985) 

 , , , : linear shape functions

: quadratic

x yu v
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• Section-strain fields 

• 3 nodes, 5 or 6 dof/node 
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Demonstration problem 
 

11 



FEM shell model:  
Aluminum stiffened flap with two rectangular cut-outs 
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F = (1, 50) 

Un-Deformed 

Deformed 

Elastostatic deformations  
(ABAQUS/STRI3 (Batoz) 3-node element, no shear 
deformation; 6 section strains only) 

causes geometrically 
nonlinear response 

12 in 

•  Model has 10 planar 
element groups 

•  Each group has its own 
material reference frame to 
define strain orientations 



3 iFEM modeling and stabilization schemes 
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Model A: Six FEM section strains are 
mapped onto all iFEM elements 
• One-to-one (high-fidelity) 
• All elements have strain data but no 

shear strain measurements 

Model B: Six FEM section strains are 
mapped onto perimeter iFEM 
elements 
• Simulates tri-axial strain rosettes 

along the perimeter 
• Interior elements have no strain 

data including the stiffener (local 
regularization) 

Model C: Two FEM section strains (axial) 
are mapped onto perimeter iFEM 
elements  
• Simulates linear strain gauges or 

FBG strain sensors 
• Incomplete strain data 
• Interior elements have no strain 

data including the stiffener (local 
regularization) 

Axial strain 
measurements 
only in perimeter 
elements 

Tri-axial strain 
measurements in 
perimeter (red) 
elements 

Tri-axial strain 
measurements in 
every element 



Linear problem: % error in reconstructed displacement, uz  
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Model A:  Six FEM section 
strains are mapped onto all 
iFEM elements 

Model B:  Six FEM section 
strains are mapped only onto 
perimeter iFEM elements 

Model C:  Two FEM section 
strains (axial) are mapped only 
onto perimeter iFEM elements 

Ref i Est i

Max

Ref

u u
% Error (u ) =

u
100z

z
z

z

 






0.45% 

0.70% 

1.1% 



Linear problem: Deviations in uz 
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iFEM              0%  noise     5%  noise 
model in strains       in strains 
 
A 1.00000 0.99998 
B 0.99999 0.99998 
C 0.99998 0.99985 

Pearson correlation, r  

iFEM              0%  noise      5%  noise 
model            in strains      in strains 
 
A 0.00017 0.00096 
B 0.00020 0.00074 
C 0.00035 0.00098 

RMS  

iFEM              0%  noise      5%  noise 
model            in strains      in strains 
 
A 0.1951 1.0505 
B 0.1934 0.8353 
C 0.3575 1.0769 

Mean % error 



Linear problem: % error in reconstructed von Mises 
stress (bottom shell surface) 

16 

Model A:  Six FEM section 
strains are mapped onto all 
iFEM elements 

Model B:  Six FEM section 
strains are mapped only onto 
perimeter iFEM elements 

Model C:  Two FEM section 
strains (axial) are mapped only 
onto perimeter iFEM elements 

Ref i Est i

Max

Ref

% Error ( ) = 100
 









Linear problem: Deviations in von Mises stress 
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iFEM              0%  noise     5%  noise 
model in strains       in strains 
 
A 0.9994 0.9993 
B 0.9842 0.9844 
C 0.9903 0.9896 

Pearson correlation, r  

iFEM              0%  noise      5%  noise 
model            in strains      in strains 
 
A 4.0149 5.72724 
B 21.9314 23.4736 
C 15.7996 16.9735 

RMS  
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• Mean % error 

• Pearson correlation, r  

• Root-Mean-Square error 

iFEM              0%  noise      5%  noise 
model            in strains      in strains 
 
A 0.3786 0.5553 
B 1.6796 1.8404 
C 1.3501 1.5133 

Mean % error 



iFEM incremental algorithm for nonlinear deformations 
 

 

• Use Nonlinear FEM as a virtual experiment (Lagrangean reference 

frame) 

– At each load increment of NL-FEM, compute the incremental section 

strains (6 components) that represent measured strain increments 

– Perform iFEM  analysis using the strain increments to obtain the 

displacements and rotations 

– Update the geometry of iFEM mesh due to deformation using iFEM 

determined  displacements, i.e., x1=x0+u1  

– Perform iFEM using the strain increments of the next load increment, and 

update the geometry for the next step x2=x1+u2  
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Nonlinear problem, F=50: Displacement magnitude (full load) 
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Model C:  Two FEM section 
strains (axial) are mapped only 
onto perimeter iFEM elements 
(simulating FBG strains) 

Reference: Nonlinear FEM/ABAQUS 
(STRI3) 

Max Max

Ref(1-u /u ) 100% 1.2% 

FEM 

iFEM (Model C) 

No measured 
strains in the 
stiffener 
 



Nonlinear problem: Displacement magnitude (full load) 
of the stiffener 
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Model C:  Two FEM section 
strains (axial) are mapped only 
onto perimeter iFEM elements 
(simulating FBG strains) 

Reference: Nonlinear FEM/ABAQUS 
(STRI3) 

Max Max

Ref(1-u /u ) 100% 1.5% 

FEM 

iFEM (Model C) 



Nonlinear problem: Von Mises stress (full load) 
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Model C:  Two FEM section 
strains (axial) are mapped only 
onto perimeter iFEM elements 
(simulating FBG strains) 

Reference: Nonlinear 
FEM/ABAQUS (STRI3) 

FEM 

iFEM (Model C) 

Max Max

Ref(1- / ) 100% 8.2%   



Summary 

• On-board SHM of nextgen aircraft, spacecraft, large space 

structures, and habitation structures 

– Safe, reliable, and affordable technologies 

•  Inverse FEM  algorithms for FBG strain measurements 

– Real-time efficiency, robustness, superior accuracy 

– Stable full-field solutions 

•  Inverse FEM theory 

– Strain-displacement relations & integrability conditions 

fulfilled 

–  Independent of material properties 

–  Solutions stable under small changes in input data 

–  Linear and nonlinear response 
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Summary (cont’d) 

• Inverse FEM’s architecture/modeling 

– Architecture as in standard FEM (user routine in ABAQUS) 

– Superior accuracy on coarse meshes 

– Frames, plates/shell and built-up structures 

– Thin and moderately thick regime 

– Low and higher-order elements 

• Inverse FEM applications 

– Computational studies: plate and built-up shell structures 

– Experimental studies with plates: FBG strains and strain 

rosettes 
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Summary (cont’d) 

• Inverse FEM’s architecture/modeling 

– Architecture as in standard FEM (user routine in ABAQUS) 

– Superior accuracy on coarse meshes 

– Frames, plates/shell and built-up structures 

– Thin and moderately thick regime 

– Low and higher-order elements 

• Inverse FEM applications 

– Computational studies: plate and built-up shell structures 

– Experimental studies with plates: FBG strains and strain 

rosettes 

24 


